A Stochastic Hybrid Systems Framework for Analyzing Markov Reward Models
نویسندگان
چکیده
In this paper, we propose a framework to analyze Markov reward models, which are commonly used in system performability analysis. The framework builds on a set of analytical tools developed for a class of stochastic processes referred to as Stochastic Hybrid Systems (SHS). The state space of an SHS is comprised of: i) a discrete state that describes the possible configurations/modes that a system can adopt, which includes the nominal (non-faulty) operational mode, but also those operational modes that arise due to component faults, and ii) a continuous state that describes the reward. Discrete state transitions are stochastic with transition rates that are (in general) a function of time and the value of the continuous state. The evolution of the continuous state is described by a stochastic differential equation and reward measures are defined as functions of the continuous state. Additionally, each transition is associated with a reset map that defines the mapping between the preand post-transition values of the discrete and continuous states; these mappings enable the definition of impulses and losses in the reward. The proposed SHS-based framework unifies the analysis of a variety of previously studied reward models. We illustrate the application of the framework to performability analysis via analytical and numerical examples.
منابع مشابه
A Stochastic Hybrid Systems framework for analysis of Markov reward models
In this paper, we propose a framework to analyze Markov reward models, which are commonly used in system performability analysis. The framework builds on a set of analytical tools developed for a class of stochastic processes referred to as Stochastic Hybrid Systems (SHS). The state space of an SHS is comprised of: i) a discrete state that describes the possible configurations/modes that a syst...
متن کاملMapping Activity Diagram to Petri Net: Application of Markov Theory for Analyzing Non-Functional Parameters
The quality of an architectural design of a software system has a great influence on achieving non-functional requirements of a system. A regular software development project is often influenced by non-functional factors such as the customers' expectations about the performance and reliability of the software as well as the reduction of underlying risks. The evaluation of non-functional paramet...
متن کاملModeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملModeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملTowards a General Theory of Stochastic Hybrid Systems
In this chapter we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Markov strings are strong Markov processes with the cadlag property. We then show how a very genera...
متن کامل